ИССЛЕДОВАНИЕ СВОЙСТВ СОВРЕМЕННЫХ ТЕПЛОИЗОЛЯЦИОННЫХ    МАТЕРИАЛОВ

Исследование свойств современных теплоизоляционных материалов

ISSN 1993-9175.

Наука та прогрес транспорту.

Вісник Дніпропетровського
національного університету залізничного транспорту, 2013, вип. 2 (44)

А. С. ЩЕРБАК
Каф. «Графика», Днепропетровский национальный университет железнодорожного транспорта им. академика В. Лазаряна, ул. Лазаряна, 2, 49010, Днепропетровск, Украина

Цель. 

Рассмотреть современные теплоизоляционные материалы, представленные на рынке Украины, и оценить эффективность их применения. 

Методика. 

Исследование и анализ теплоизоляционных материалов, представленных на рынке Украины, согласно существующим стандартам. 

Результаты. 

Для обеспечения энергосбережения в зданиях и сооружениях необходимо применять отечественный теплоизоляционный материал, который обладает заданными теплотехническими характеристиками, пониженными показателями водопоглощения, горючести и токсичности, а также повышенной долговечностью и относительно низкой себестоимостью.

Научная новизна.

Систематизированы основные теплоизоляционные материалы, которые наиболее широко применяются в строительстве, проведены исследования их свойств и выбран наиболее эффективный теплоизоляционный материал – пеностекло, который отличается высокими теплотехническими свойствами и обладает наилучшими экологическими показателями, а также стойкостью к воздействию агрессивных факторов. 

Практическая значимость. 

Особое внимание заслуживает теплоизоляционный материал – пеностекло, который является искусственным силикатным материалом с равномерно размещенными порами (0,1…5,0 мм), разделенными тонкими перегородками из стекловидного вещества, обладает необходимыми свойствами и, благодаря вышесказанному, может быть принят для исследований, направленных на его усовершенствование (модификацию). Результаты исследований могут быть применены в производстве пеностекла, которое применяется для теплоизоляции зданий и сооружений, оборудования, трубопроводов и т.д.

Постановка проблемы

Основным резервом энергосбережения является снижение потребления энергоресурсов объектами жилищно-общественного назначения, доля которых в общем потреблении строительной отраслью составляет свыше 80%. Приведение теплотехнических свойств объектов к современному европейскому уровню позволит, кроме сбережения энергоресурсов, решить проблему обеспечения нормативного уровня комфорта жилой среды, отсутствие которого стало существенной социальной проблемой жильцов многоквартирных жилых домов и работников заведений социального назначения.

Анализ предварительных исследований

Проведенный анализ материалов исследований и публикаций [1-8] указал на проблемы использования современных теплоизоляционных материалов. Если говорить о пенополистироле, то основными его отрицательными свойствами являются недолговечность, горючесть и экологическая опасность. Как показывает опыт строительства, заложенный в стены пенополистирол через 10–15 лет разрушается. Также обстоит дело с минераловатными изделиями. Уже через 7–9 лет они переходят в пылевидное состояние, что экологически небезопасно. Следовательно, использование пенопласта и минераловатных изделий в строительстве ведет к тому, что уже через 7–10 лет ограждающие конструкции не будут обеспечивать требуемого термического сопротивления. Несмотря на преимущества ячеистых бетонов в сравнении с другими теплоизоляционными  материалами, им присущи существенные недостатки. Высокое водопоглощение приводит к низкой влаго-и морозостойкости. Повышенная гидрофобность их снижает адгезию к поверхности и затрудняет штукатурные работы. Низкая прочность в сочетании с большой плотностью и недостаточными теплоизоляционными свойствами сужает область их применения [5]

Цель работы

Рассмотреть современные теплоизоляционные материалы, представленные на рынке Украины, и оценить эффективность их применения.

Изложение основного материала

Учитывая большое разнообразие теплоизоляционных материалов, важным вопросом является их систематизация и разработка высокоэффективных материалов.

Благодаря проведенным исследованиям накоплен богатый экспериментальный опыт и разработаны эффективные материалы для обеспечения теплоизоляции зданий и сооружений. И проведение сравнительного анализа материалов позволит выбрать путь разработки новых составов для изготовления теплоизоляционных материалов и их эффективной оптимизации.

Известно, что основными требованиями к теплоизоляционным материалам являются низкая теплопроводность и пригодность для тепловой изоляции строительных конструкций жилищных, производственных и сельскохозяйственных зданий, поверхностей производственного оборудования и агрегатов (промышленных печей, турбин, трубопроводов, камер холодильников и др.).

Эти материалы должны иметь небольшую среднюю плотность – не выше 600 кг/м3, что достигается с помощью повышения их пористости [3].

В гражданском и транспортном строительстве тепловая изоляция позволяет уменьшить толщину ограждающих конструкций (стен, кровли), снижать затраты основных строительных материалов (кирпича, бетона, древесины), облегчать  конструкции  и  снижать  их  стоимость, уменьшать затраты топлива в эксплуатационный период. В технологическом и энергетическом  оборудовании  тепловая  изоляция снижает потери теплоты обеспечивает необходимый технологический температурный режим, снижает удельные затраты топлива на единицу продукции, улучшает условия труда. Чтобы получить достаточный эффект от применения тепловой изоляции, в инженерных проектах проводятся соответствующие тепловые расчеты, в которых принимаются конкретные разновидности теплоизоляционных  материалов и учитываются их теплофизические характеристики [2]. За  последние  годы  на  украинском  строительном рынке появились десятки новых теплоизоляционных материалов, благодаря чему произошел значительный прорыв, в первую очередь, в сфере энергосбережения. С развитием новых технологий, современные изоляционные материалы стали более эффективными, экологически безопасными, разнообразными и отвечают конкретным техническим заданиям строительства: возможности строительства высотных зданий, уменьшению толщины ограждающих конструкций, снижению массы зданий, расходов строительных материалов, а также экономии топливно-энергетических ресурсов при обеспечении нормального микроклимата в помещениях.

Для проведения качественной классификации теплоизоляционных материалов следует исследовать их особенности изготовления и свойства.

Органические теплоизоляционные материалы изготавливаются из натурального сырья: отходов деревообработки и сельского хозяйства, торфа, а также различных пластмасс, цемента. Это достаточно большая группа материалов, представленная на рынке в обширном ассортименте. Практически всем органическим теплоизоляторам свойственна низкая огне-, водо-и биостойкость. Как правило, применяют органические теплоизоляторы на участках, где температура поверхности и окружающей среды не поднимается выше 150 градусов, а также в качестве среднего слоя многослойных конструкций – в штукатурных фасадах, при облицовке стен, в тройных панелях и т. п.

Более стойки к действию влаги, огня и биоагентов, материалы, изготовленные из газонаполненных пластмасс (пенополистирол, пенопласт, поропласт, сотопласт и др.). Ячеистые пластмассы сегодня занимают значительную долю на рынке теплоизоляционных материалов. Утеплители на их основе пользуются заслуженной популярностью благодаря своим физическим свойствам, невысокой стоимости, простоте обработки и долговечности.

Изделия из арболита имеют следующий состав: портландцемент, мелковолокнистые компоненты (опилки, сеченая солома и камыш, щепа, стружка), а  в качестве минерализатора используются химические добавки: растворимое стекло, сернокислый глинозем, хлористый кальций [6].

Наиболее распространен  в современном строительстве арболит, который имеет плотность 500…700 кг/м3, теплопроводность этого материала составляет 0,08…0,12 Вт/(мК), прочность при сжатии – 0,5…3,5 МПа; прочность на растягивание при изгибе – 0,4…1,0 МПа.

Пенополивинилхлорид (ППВХ) изготавливается путем поризации поливинилхлоридных смол. Средняя плотность материала – 60… 200 кг/м3. Различают твердый и мягкий поливинилхлорид, что позволяет использовать его как теплоизоляционный материал, так и для фасадов, стен, пола и кровли, а также дверей.

Древесностружечные плиты (ДСПсостоят из органических волокнистых компонентов (как правило, специальным образом подготовлена древесная стружка) – 90 %; смолы на синтетической основе – 7…9 %; гидрофобизирующие вещества, антисептика, антипирен. Их плотность – 500…1000 кг/м3; прочность при изгибе – от минимальной 10…25 МПа; влажность

– 5…12 %; набухание в воде – 5…30 %.

Деревоволокнистые изоляционные плиты (ДВП) изготавливаются из отходов древесины: отходы деревообработки и лесопилен, бумажная макулатура, стебли кукурузы, соломы, как связующий компонент – всевозможные связующие: синтетические смолы и химические добавки (гидрофобизаторы, антипирены, антисептики), плотностью – до 250 кг/м3, прочностью при изгибе – до 12 МПа, теплопроводностью – до 0,07 Вт/(мК).

Пенополиуретаны (ППУ) получают в результате химической реакции, в которую вступают полиэфир, вода, дизоцианид, эмульгаторы и катализаторы плотностью – 40…80 кг/м3 (ППУ с плотностью выше 50 кг/м3 приобретают также и гидроизоляционные свойства). ППУ обладают низкой теплопроводностью – 0,019…0,028 Вт/мК. Кроме тепло- и гидроизоляционных свойств, ППУ обладают высокой акустической изоляционной способностью, высокой химической стойкостью. Применяются для заливаемой теплоизоляции, позволяют обеспечивать гидроизоляцию и утепление конструкций любой сложности, избегая возникновения «мостиков холода».

Мипора изготавливается путем вспенивания водной эмульсии смолы мочевино-формальдегидной, в которую для снижения хрупкости добавляется глицерин. Также в составе этого материала присутствуют нефтяные сульфокислоты  (как  пенообразователь)  и  органические кислоты (как катализатор). Мипора может поставляться как в виде блоков, плит или крошки, так и заливаться в конструкции и полости, где и твердеет при комнатной температуре. Плотность ее не превышает 20 кг/м3 (это почти в 10 раз меньше, чем у пробки), теплопроводность – 0,03 Вт/(мК). Мипора не горит при температуре до 500 ºС, а лишь обугливается. Кроме того, в состав мипоры вводят антипирен, который предотвращает ее воспламенение в среде кислорода. Мипора чувствительна к агрессивному химическому действию. Из-за высокой пористости имеет значительное водопоглощение.

Пенополистирол (ППС) является пенопластом, который состоит на 98 % из воздуха и на 2 % – полистирола, выработанного из нефти, путем поэтапного процесса. Также в состав пенополистирола вводится незначительное количество разных модификаторов, например, антипирен. Его теплопроводность – 0,037…0,041 Вт/(мК), а низкая гигроскопичность обусловливает отличные гидроизоляционные качества пенополистирола, стойкий к коррозии, он не создает благоприятную среду для развития микрофлоры, несклонный к действию биоагентов – обладает низкой горючестью. В принципе, это самозатухающий материал: при горении количество тепловой энергии, которая выделяется пенополистиролом, меньше, чем у древесины в 7 раз.

Вспененный полиэтилен изготовляется из полиэтилена с добавлением, как пенообразующего агента, углеводородов. Плотность его 25…50  кг/м3,  теплопроводность  – 0,044…0,051 Вт/мК. Используется в качестве шумо- и пароизоляции при температуре в диапазоне от –40 до +100 °С, имеет низкое водопоглощение, а также является химически и биологически стойким материалом.

Фибролит является плиточным материалом, который изготавливается из тонких, узких древесных стружек (древесной шерсти) и неорганического вяжущего компонента (как правило, для этого используется портландцемент, иногда

– магнезиальное вяжущее). Плотность материала – 300…500 кг/м3, теплопроводность – 0,08…0,1 Вт/(мК). Фибролит благодаря неорганическим добавкам имеет более высокие показатели огнестойкости, биологической и химической стойкости. Может применяться в условиях повышенной влажности, например, для обработки помещений, где расположены бассейны [4].

В результате проведенных исследований у всех органических теплоизоляционных материалов основными недостатками являются их низкие показатели стойкости под воздействием нагрузок, огня, воды и грызунов. Кроме того, эти материалы имеют высокую степень токсичности, особенно во время пожаров. Поэтому их можно рекомендовать к использованию только в помещениях, где нет постоянного присутствия людей, или для утепления стен снаружи зданий, при условии обеспечения их надежной защиты от атмосферных воздействий.

Неорганические теплоизоляционные материалы представлены на рынке в еще более широком ассортименте. Для их производства применяется всевозможное минеральное сырье: горные породы, шлак, стекло, асбест. К утеплителям этого типа относится минеральная и стеклянная вата, изделия из них, некоторые легкие бетоны на вспученном перлите, вермикулите и других пористых заполнителях, ячеистые теплоизоляционные бетоны, асбестовые, асбестосодержащие, керамические материалы, пеностекло. Первое место по объемам производства среди всех теплоизоляционных материалов занимает минеральная вата. Наиболее популярна вата таких производителей, как Isover, Isoroc, Rockwool. Эти материалы малогигроскопичные, огнестойкие, не поддаются загниванию. Их используют как для утепления строительных конструкций, так и для изоляции горячих поверхностей промышленного оборудования и трубопроводов.

Минеральные утеплители выпускаются самого разного вида. Это могут быть и рулонные материалы, и жесткие плиты, и сыпучие материалы. Мы рассмотрим лишь основные из них и исследуем наиболее распространенные на рынке неорганические теплоизоляционные материалы, такие как: минеральная вата, стекловата, пеностекло, ячеистые бетоны, силикаты и др.

Минеральная вата, в зависимости от сырья, может быть каменной (базальт, доломит, диабаз, известняк, и ..) и шлаковой (шлаки черной и цветной металлургии). Кроме минерального сырья в составе минеральной ваты присутствуют связывающие компоненты:  фенольная или карбомидная смола. Вата с фенольным связывающим веществом наиболее распространена в строительстве, поскольку является более водостойким материалом, чем минеральная вата с карбомидным связующим. Минеральная вата является негорючим материалом. Кроме того, она способна предотвращать распространение огня, поэтому ее используют также и для огнезащиты и противопожарной изоляции. Минеральная вата (минвата) используется в качестве эффективной акустической изоляция, по-скольку обладает высоким звукопоглощением. Она имеет чрезвычайно низкую гигроскопичность и высокую химическую стойкость. Минеральная вата дает очень низкую усадку, которая обеспечивает сохранение геометрических размеров материала в течение всего срока эксплуатации   и   предотвращает   возникновение

«мостиков холода». Недостатком минеральной ваты является ее высокая паропроницаемость. Поэтому теплоизоляция из минваты часто требует дополнительной пароизоляции.

Для изготовления стеклянной ваты (стекловата) используют то же сырье, что и для производства стекла или отходы стеклянной промышленности. Волокна стекловаты имеют большую, чем у минеральной ваты, толщину и длину. Благодаря этому стекловата обладает высшей прочностью и упругостью. Плотность стеклянной ваты в рыхлом состоянии – не свыше 130 кг/м3, теплопроводность – 0,030…0,052 Вт/мК, температуростойкость – не превышает 450 °С. Стекловата широко применяется как звукоизолятор. Обладает высокой стойкостью к химическому воздействию. Не гигроскопична, не склонна к коррозии, негорючая, не выделяет токсичных веществ под действием огня.

Керамическая вата изготавливается методом высокоскоростного центрифугирования или раздувания из окислов алюминия и кремния, циркония. Керамическая вата обладает существенно высшей термостойкостью, чем стеклянная вата, и даже опережает по этому показателю вату минеральную. Максимальная рабочая температура использования изделий из керамической ваты превышает 1 000 °С. Теплопроводность изделий – 0,13…0,16 Вт/мК (при температуре 600 °С), плотность – до 350 кг/м3. При температуре выше 100 °С керамическая вата приобретает электроизоляционные свойства; обладает высокой химической стойкостью. Изделия из керамической ваты стойки к разным деформациям [1].

Пеностекло (пористое стекло) выпускают в виде блоков или плит путем спекания порошка стеклогранулята или некоторых горных пород вулканического происхождения (сиенит, нефелин, обсидиан и др.) с газообразователями, например с известняком или антрацитом. При температуре 800…900 °С части стеклогранулята начинают сплавляться, а выделяющиеся из газообразователя газы образуют большое количество пор (пористость от 80 до 95 %). При этом в стекловидном материале межпоровых стенок содержатся мелкие микропоры. Двоякий характер пористости обеспечивает высокую теплоизоляционную способность пеностекла. Теплопроводность у плит из пеностекла при средней плотности 150…300 кг/м3 колеблется от 0,04 до 0,12 Вт/(мК), а граница прочности при сжатии от 1,0 до 3,0 МПа, при этом они хорошо обрабатываются (пилятся, сверлятся, шлифуются). Изделия из пеностекла имеют высокую водостойкость, морозостойкость и температуростойкость. Для стекла обычного состава  температуростойкость  равняется  300…500°С, для безщелочного стекла – до 1000 ºС. Пеностекло применяют как утеплитель стен, перекрытий, полов и кровель промышленных и гражданских домов, в том числе железобетонных панелей в сборных крупнопанельных домах, в  конструкциях холодильников,  а  также для изоляции тепловых установок и сетей [8].

Ячеистые бетоны и силикаты применяют как теплоизоляционные материалы и изделия при средней плотности ниже 400 кг/м3. По виду примененного порообразователя и вяжущего вещества в этих теплоизоляционных материалах их называют газобетонами, газосиликатами, пенобетонами, пеносиликатами. Эти бетоны могут быть смешаны с порообразователем и тогда имеют названия – пеногазобетон, пеногазосиликаты, керамзитопенобетоны и тому подобное. Из ячеистых бетонов обычно изготавливают плиты длиной до 1 000 мм, шириной 400, 500, 600 мм, толщиной 80, 240 мм. Их марки по средней плотности 350 и 400 кг/м3, а граница прочности при сжатии для изделий первой категории качества не менее 0,7 МПа, теплопроводность в сухом состоянии при температуре 25 °С составляет 0,093…0,15 Вт/(мК). Плиты из ячеистых бетонов применяют для теплоизоляции стен и перекрытий, покрытия поверхностей заводского оборудования и трубопроводов (пластичные бетоны и растворы) [4].

Все неорганические теплоизоляционные материалы имеют высокую стойкость к воздействию огня и не выделяют токсических веществ. Поэтому они являются наиболее универсальными при утеплении зданий и оборудования.

На основании проведенного анализа литературных источников и проведенных предварительных экспериментов была выполнена систематизация наиболее эффективных теплоизоляционных материалов. Так в отраслевой научно-исследовательской лаборатории «Материалы и здания для железнодорожного транспорта» при Днепропетровском национальном университете железнодорожного транспорта были проведены комплексные исследования групп теплоизоляционных материалов. Главной целью проведенных исследований было определение физико-механических свойств наиболее распространенных теплоизоляционных материалов (табл. 1).

 

Выводы

Проведя анализ теплотехнических характеристик разных теплоизоляционных материалов, представленных на рынке, можно отметить, что все они удовлетворяют требованиям ДБН В 2.6-31:2006 «Тепловая изоляция зданий», однако, также следует уточнить: пенополиуретан, пенополистирол, экструдированный пенополистирол, минеральная вата и изделия и вспененный полиэтилен выделяют токсичные вещества, концентрация которых не превышает ПДК, но обладает накопительными свойствами, что ограничивает область применения данных материалов.

Наиболее оптимальным по тепло-техническим, эксплуатационным и физико-механическим свойствам, а также, учитывая экологическую безопасность и технологичность, является пеностекло.

Однако производство этого материала достаточно энергоемко и требует модификации и оптимизации составов, а также совершенствования технологии производства с целью снижения стоимости этого материала без потерь в физико-механических показателях.

Физико-механические свойства теплоизоляционных материалов

Таблица 1

ПоказательБазальтовая
вата
СтекловатаПенополи-стиролЭкструди-рованный
пенополи-стирол
ПеностеклоЦеллюлозная
изоляция
ГазобетонМипора
Коэффициент
теплопроводности, λ (Вт/мК)
0,04… 0,0590,04…0,0430,034…0,040,030,04…0,050,036…0,040,08…0,150,035…0,047

Водопоглощение,

% по массе

до 70до 701,5…3,50,1…0,40,2…1202015…20
Плотность, ρ (кг/м3)302525…2728…45120…16035…65350…70010…20
Прочность
при сжатии, (МПа)
до 0,1до 0,10,180,2…0,51…33…70,025…0,03
Прочность
при изгибе, (МПа)
0,270,25…0,70,4…0,62…50,025…0,03
Коэф-нт
паропроницаемости, µ (мг/м×ч×Па)
0,540,550,050,015…0,0180…0,0050,30,23…0,280,2…0,3
Горючесть, маркаНГНГГ1 —–Г4Г1 —–Г 4НГГ1 —–Г2НГГ2
Рабочая температура, (º С)до +700от -60 до +450от -50 до +60от -50 до +75от -30 до +500от -30 до +400от -50 до +100
Долговечность, (лет)до 50до 1010 —–15до 50Не ограниченодо 80В сухом состоянии не ограниченобольше 50

Ключевые слова: теплопроводность, энергосбережение, теплоизоляция, силикат, долговечность, водопоглощение, горючесть, токсичность, пористость, плотность, прочность

Обратите внимание stroy-it

ПОТОМУ ЧТО ЭТО БЕСПЛАТНО, И НИ К ЧЕМУ НЕ ОБЯЗЫВАЕТ

  • ВЫЕЗД ИНЖЕНЕРА
  • КОНСУЛЬТАЦИЯ СПЕЦИАЛИСТА
  • КАЧЕСТВЕННАЯ СМЕТА
  • РАБОТАЕМ БЕЗ ВЫХОДНЫХ

Напишите способ для связи с Вами

Есть вопрос?
Задайте его менеджеру в любом удобном для Вас мессенджере!

Получите в сообщении купон на скидку 15%*

Есть вопрос?
Задайте его менеджеру в любом удобном для Вас мессенджере!