НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ СТРОИТЕЛЬНОЙ ФИЗИКИ (НИИСФ) РОССИЙСКОЙ АКАДЕМИИ АРХИТЕКТУРЫ И СТРОИТЕЛЬНЫХ НАУК (РААСН)

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ ВСПЕНЕННОГО ПОЛИПРОПИЛЕНА «ПЕНОТЕРМ» В КОНСТРУКЦИЯХ «ПЛАВАЮЩИХ» СТЯЖЕК ДЛЯ УЛУЧШЕНИЯ ЗВУКОИЗОЛЯЦИИ МЕЖДУЭТАЖНЫХ ПЕРЕКРЫТИЙ

ДИРЕКТОР ИНСТИТУТА

АКАДЕМИК РААСН Г.Л. ОСИПОВ

ЗАВ. ЛАБОРАТОРИЕЙ АКУСТИЧЕСКИХ МАТЕРИАЛОВ Д.Т.Н., ПРОФЕССОР

Л.А. БОРИСОВ

Содержание

1.	Технические характеристики материала и изделий «ПЕНОТЕРМ»	
2.	Общие рекомендации по применению	
3.	Звукоизоляция междуэтажных перекрытий	5
ПРІ	ИЛОЖЕНИЕ Пример расчета	
	А. Расчет звукоизоляции между помещениями квартир с	
	многопустотной плитой перекрытия	13
	Б. Расчет звукоизоляции между помещениями квартир с	
	монолитным перекрытием	15

1 Технические характеристики материала и изделий «ПЕНОТЕРМ»

- **1.1.** Изделия под торговой маркой «ПЕНОТЕРМ НПП Л» и «ПЕНОТЕРМ НПП ЛЭ» фирмы «УРАЛПЛАСТИК» изготавливаются экструзионным методом из полипропилена, с введением вспенивателя, антиперенов, стабилизирующих и других технологических добавок.
- **1.2.** ПЕНОТЕРМ НПП Π получают ламинированием, т.е. нагревом листов материала НПП и соединение их под давлением.
- **1.3.** ПЕНОТЕРМ НПП ЛЭ ламинированный материал с введением специальных пластифицирующих добавок, придающим ему необходимую эластичность.
- **1.4.** Физико-механические и эксплуатационные характеристики материала сведены в таблицу. Tаблица 1.1.

Наименование показателя	Норма	Метод испытания
Динамический модуль упру-		
гости, при нагрузке 2000 H/м ² ,		
МПа		ГОСТ 16297-80
ПЕНОТЕРМ НПП Л	1,1±0,01	
ПЕНОТЕРМ НПП ЛЭ	0,66±0,01	
Относительное сжатие, при		
нагрузке 2000 Н/м ²		ГОСТ 16297-80
ПЕНОТЕРМ НПП Л	0,06	1001 16297-80
ПЕНОТЕРМ НПП ЛЭ	0,11	
Прочность при сжатии при	0,019	ГОСТ 11262-80
10% деформации, МПа		100111202-80
Водопоглощение, %	0,74	ГОСТ 17177-94
Плотность, кг/м ³	40	ГОСТ 17177-94
	Γ2	ГОСТ 30244-94
Возгораемость (горючесть)	B2	ГОСТ 30402-97
	ДЗ	ГОСТ 12.1.044-89
Гарантийный срок хранения,	12	ТУ 2246-014-00203430-2001
мес	1 2	17 2270-017-00203730-2001
Условия эксплуатации	Полная защита от УФ лучей	ТУ 2246-014-00203430-2001

1.5. Изделия ПЕНОТЕРМ выпускаются в рулонах и зависимости от числа слоев следующих размеров

Таблииа 2.2.

Материал Марка	Толщина, мм	Ширина, мм	Длина, м
ПЕНОТЕРМ	8-15	1200/1500	25
НПП Л	0 13	1200/1300	23
ПЕНОТЕРМ	8-15	1200/1500	25
НПП ЛЭ		1200/1300	25

- **1.6.** Изделия имеют пожарный сертификат № ССПБ.RU.ОП027.В00031 от 15.02.02.
- **1.7.** Изделия имеют гигиенический сертификат № $66.01.10.224.\Pi.000126.02.02$ от 26.02.02.
- **1.8.** Изделия имеют сертификат соответствия № РОСС RU.A955.H58509 от 95.04.02.

2. Общие рекомендации по применению

- **2.1.** Альбом рекомендаций содержит принципиальные решения по использованию материалов ПЕНОТЕРМ в качестве упруго-пластичной прокладки в конструкции плавающего пола, некоторые схемы конструктивных решений, материалы для проектирования.
- **2.2.** Содержащиеся в альбоме рекомендаций материалы и схемы конструктивных решений предназначены для применения в одно- и многоэтажных жилых и общественных зданиях с сухим, нормальным и влажным температурно-влажностным режимом.
- **2.3.** Проектирование следует вести с учетом указаний и ограничений действующих норм и рекомендаций:

СНиП 2.08.01-89 «Жилые здания»;

СНиП 2.08.02-89 «Общественные здания и сооружения»;

СНиП 2.09.04-87 «Административные и бытовые здания»;

СНиП II-3-79* «Строительная теплотехника»;

СНиП 21-01-97 «Пожарная безопасность зданий и сооружений»;

СНиП 2.03.13-88 «Полы»;

СНиП II-12-77 «Защита от шума».

ГОСТ Р (СТ СЭВ 4867-84)-87. «Защита зданий от шума в строительстве. Звукоизоляция ограждающих конструкций. Нормы».

МГСН 2.04-97 .Московские городские строительные нормы. «Допустимые уровни шума, вибрации и требования к звукоизоляции в жилых и общественных зданиях».-М.: ГУП «НИАЦ», 1997

Пособие к МГСН 2.04-97 «Проектирование звукоизоляции ограждающих конструкций жилых и общественных зданий».-М.: ГУП «НИАЦ», 1998

Международный стандарт ИСО 717 (Части 1,2,3). «Акустика. Оценка звукоизоляции ограждающих конструкций и элементов зданий».

- **2.4.** В соответствии с требованиями СНиП II-12-77 нормируемыми параметрами звукоизоляции перекрытий в жилых и общественных зданий являются индекс изоляции воздушного шума I_B в дБ и индекс приведенного уровня ударного шума под перекрытием I_y в дБ.
- **2.5.** В настоящее время в связи с появлением международного и отечественного стандартов введены новые нормативные оценочные кривые и соответствующие им новые обозначения индексов изоляции воздушного шума R_W и ударного шума L_{nW} . Для большинства наиболее распространенных строительных конструкций установлена связь между новыми и старыми показателями звукоизоляции, которая может быть представлена формулами:

$$R_W = I_B + 2$$
, дБ, и $L_{nW} = I_V - 7$, дБ.

Кроме того, введено понятие индекса улучшения изоляции ударного шума Δ L_{nW} конструкцией пола перекрытия.

3. Звукоизоляция междуэтажных перекрытий с плавающим полом

Выбор конструкции плавающего пола определяется назначением помещений и зданий, в которых предполагается устройство пола, а также типом и толщиной несущей плиты перекрытия в жилых и общественных зданиях.

Плавающий пол представляет собой плиту или стяжку из бетона, гипса или асфальта или других подобных материалов толщиной не менее 50 мм и поверхностной плотностью не менее 60 кг/м², укладываемую на слой упругого изоляционного материала «ПЕНОТЕРМ». При необходимости выполняется армирование стяжки.

Значения индексов приведенного уровня ударного шума для перекрытий с плитами сплошного сечения следует принимать по таблице 3.1

Таблина 3.1

Поверхностная плотность	Ориентировочная толщина	Значения L _{nW.} (I _y), дБ
плиты перекрытия, кг/м ²	плиты перекрытия, мм	
150	60	86
200	80	84
250	100	82
300	120	80
350	140	78
450	180	76

- **3.4** Индекс приведенного ударного шума L_{nw} под междуэтажным перекрытием с полом на звукоизоляционном слое следует определять в соответствии с п. 3.11 пособия к МГСН 2.04-97
- **3.5** Требуемая толщина звукоизоляционного слоя материала «ПЕНОТЕРМ» определяется расчетом или принимается в соответствии с гл.6 СНиПа II-12-77 «Защита от шума».
- **3.6** Для эффективного использования звукоизоляционного материала «ПЕНОТЕРМ» необходимо правильно выбрать соотношение между толщиной слоя изоляционного материала и нагрузкой (стяжкой с покрытием пола) с тем, чтобы резонансная частота колебания пола была минимально низкой и при этом не происходило разрушения звукоизоляционной прокладки.
- **3.7** Применение звукоизоляционных прокладок из материала «ПЕНОТЕРМ» в зависимости от толщины прокладки и поверхностной плотности стяжки обеспечивает индекс снижения приведенного уровня ударного шума под перекрытием от 20 до 22 дБ, что в большинстве реальных случаев позволяет выполнить нормативные требования по изоляции ударного шума.
- **3.8** Принципиальные схемы конструктивных решений звукоизоляции междуэтажного перекрытия представлены на рис. $3.1 \div 3.5$.
- 3.9 Полы в зданиях
- **3.9.1** Относительная влажность воздуха в помещениях в процессе устройства покрытия полов не должна превышать 80%. Температура воздуха на уровне пола при устройстве выравнивающей цементно-песчаной стяжки должна быть не менее +5°C. Устройство полов должно выполнятся после окончания всех строительно-монтажных, электро-технических и отделочных работ.
- **3.9.2** До начала производства работ по устройству полов монтажные отверстия в перекрытиях, зазоры между плитами, места примыкания перекрытий к стенам перегородок, трубам должны быть заделаны цементно-песчаным раствором не ниже М 100.
- **3.9.3** В местах пересечения инженерных коммуникаций, а также местах примыкания к оконным витражам, конструкциям должна быть выполнена негорючая изоляция.
- **3.9.4** При укладке звукоизоляционных прокладок из материала «ПЕНОТЕРМ» в коридорах, следует предусмотреть рассечки из негорючих материалов шириной не менее 200 мм, устанавливаемые не реже чем через 60 м.
- **3.9.5**. При устройстве теплоизоляции пола над вентилируемым подпольем, толщина материала «ПЕНОТЕРМ» подбирается теплотехническим расчетом в соответствии с СНиП II-3-79* «Строительная теплотехника». При это учитывается, что коэффициент теплопроводности λ =0,0344 Вт/м °К (Заключение НИИМосСтрой № 2-222/02 от 11.09.02 г.).

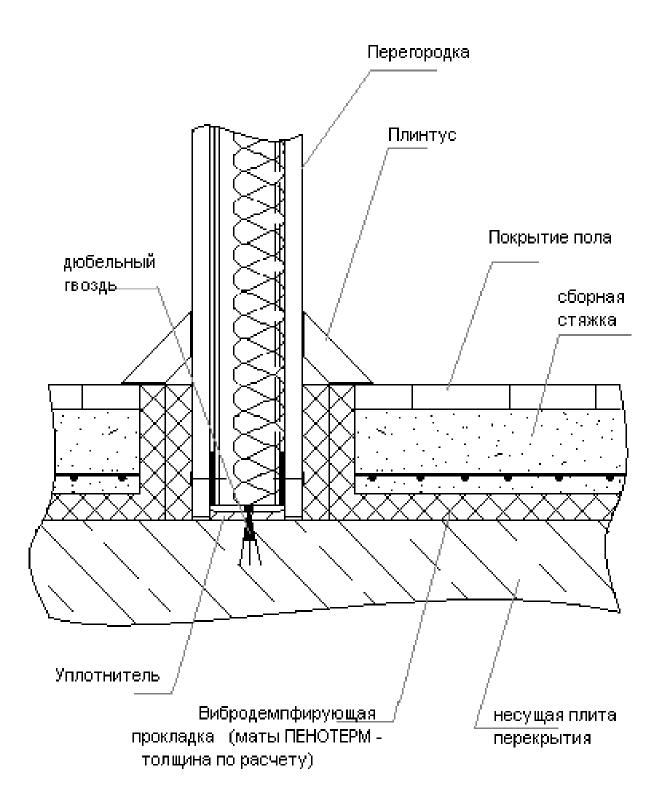


рис. 3.1 Сопряжение пола с перегородкой

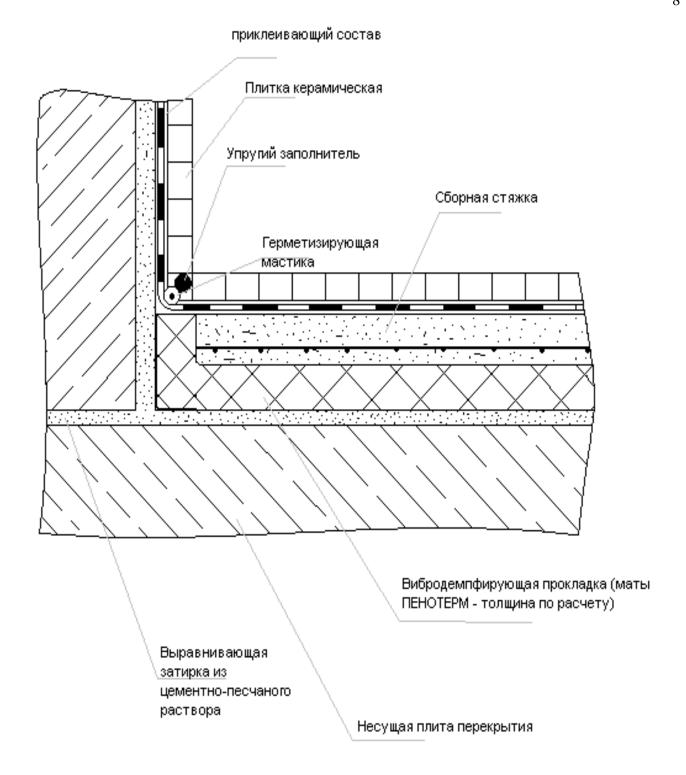


рис. 3.2 Примыкание пола в ванной комнате

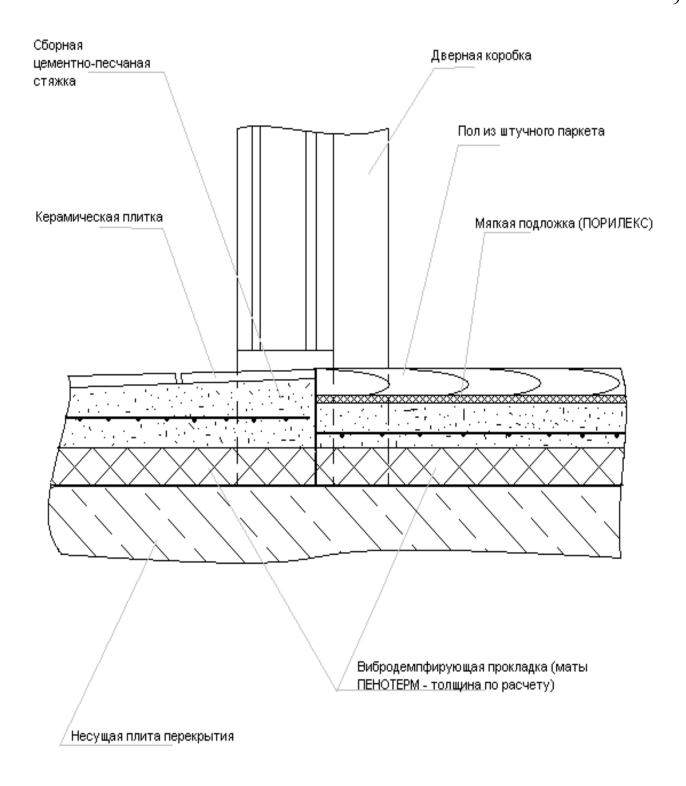


рис. 3.3 сопряжение полов из керамической плитки и штучного паркета

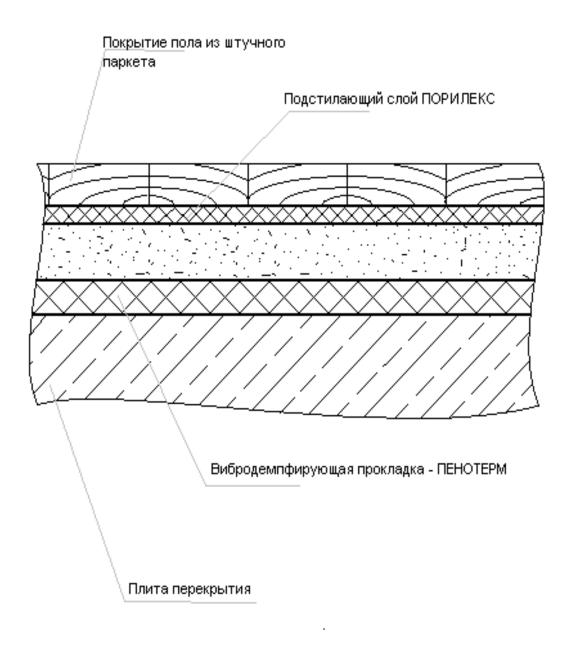


рис. 3.4 Полы из штучного паркета

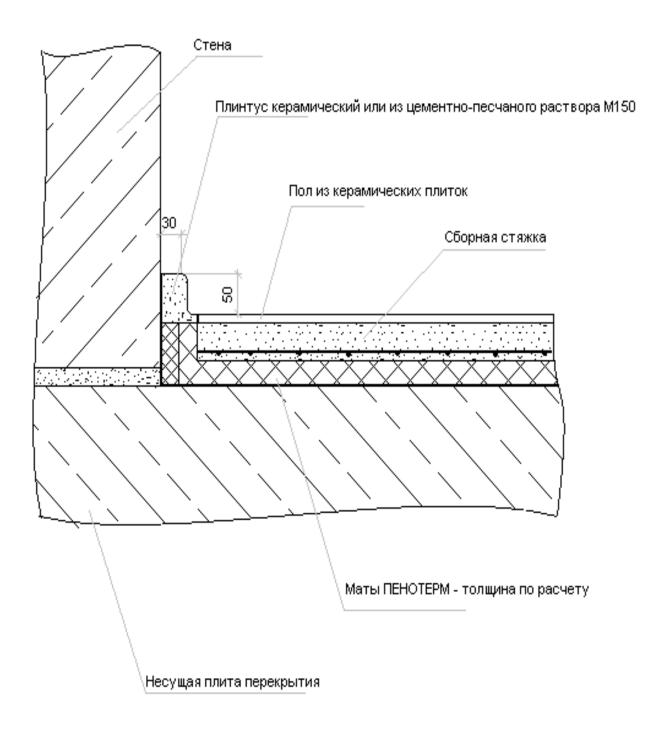
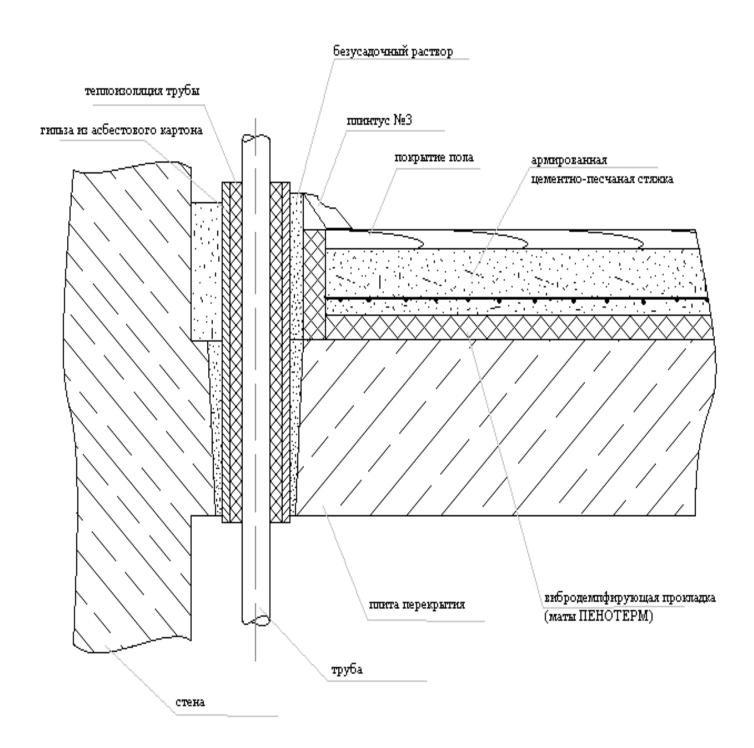
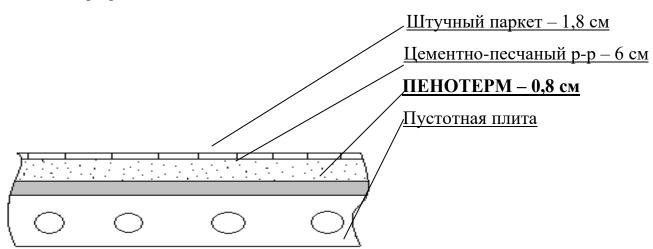


рис 3.5 Примыкание плиточных полов к перегородкам




рис 3.6 Примыкание трубопроводов в междуэтажных перекрытиях

А Расчет звукоизоляции между помещениями квартир с многопустотной плитой перекрытия

В соответствии с требованиями СНиП II-12-77 «Защита от шума», нормативный индекс изоляции воздушного шума I_B в дБ и приведенного уровня ударного шума под перекрытием I_Y в дБ следует принимать по табл. 7 СНиПа или по табл. 6 МГСН 2.04-97

$$I_B - 50 \text{ дБ (}R_W = 52 \text{), дБ ;}$$
 $I_Y - 67 \text{ дБ (}L_{nW} = 58 \text{)}$

Состав перекрытия:

1. Расчет изоляции воздушного шума пустотным перекрытием

Индекс изоляции воздушного шума I_B в Дб перекрытием определяется по табл. 10 СНиПа в зависимости от величины индекса изоляции воздушного шума плитой перекрытия I_{BO} , определенного в соответствии с п.п. 6.8 и 6.9 и частоты резонанса $f_{P\Pi}$ в Γ ц, определяется по формуле:

$$f_{\rm P\Pi} = 0.5* \sqrt{\frac{E\partial * (m1+m2)}{h3*m1*m2}}$$
, где

 $E_{\rm d} = 6.6*10^4~{\rm krc/m^2}$ (динамический модуль упругости звукоизоляционного слоя) ;

 $m_1 = 300 \ {\rm kr/m}^2$ (поверхностная плотность плиты);

 $m_2 = 110.8 \text{ кг/м}^2$ (поверхностная плотность выше звукоизоляционного слоя);

 $h_3 = h_0*(1-\mathbf{\mathcal{E}}_{\prod})$, где h_0 — толщина звукоизоляционного слоя в не обжатом состоянии —

0,008м; ξ_{Π} – относительное сжатие материала под нагрузкой – 0,1

 $h_3 = 0.008*(1-0.1)=0.0072.$

$$f_{P\Pi} = 0.5* \sqrt{\frac{6.6*10000*(300+110.4)}{0.0072*300*110.8}} = 168.2 \ \Gamma\text{u},$$

 $I_{BO} = 23*lg m_9 - 10 Дб$ (СНиП стр.13, при m > 200 кг/м²);

 $m_{\text{Э}} = \kappa^* m_1 = 1,34*300 = 402 \text{ кг/м}^2$ (для пустотной плиты $\kappa = 1,34$);

$$I_{BO} = 23*lg (402) - 10 = 23*2,6 - 10 = 50$$
 дБ

По табл. 10 в зависимости от $f_{P\Pi}$ и I_{BO}

определяем $I_B=52\,$ дБ ($R_W=54$), что больше 50 дБ нормируемого значения индекса изоляции воздушного шума (по СНи Π) и $R_W=52\,$ (по МГСН).

2. Расчет изоляции ударного шума пустотным перекрытием

Индекс приведенного уровня ударного шума $I_{\rm Y}$ перекрытием с полом на звукоизоляционном слое определяется по табл.12 СНиП в зависимости от величины индекса приведенного уровня ударного шума перекрытия $I_{\rm YO}$, определяемого по табл.13 и частоты колебания пола, лежащего на звукоизоляционном слое - $f_{\rm O}$

$$f_O = \sqrt{\frac{E\partial}{h3*m2}}$$
, где

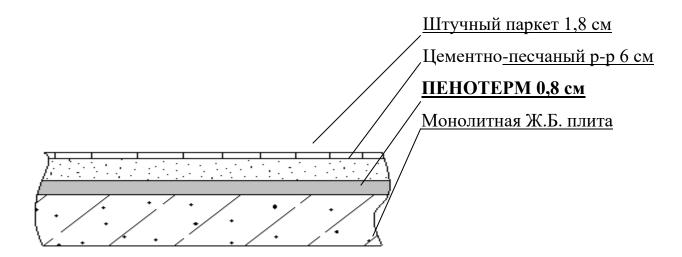
 $E_{\pi} = 6.6*10^4 \text{ kpc/m}^2$:

 $h_3 = 0.0072$:

 $m_2 = 110.8 \text{ K}\Gamma/\text{M}^2$.

$$f_O = 0.5* \sqrt{\frac{6.6*10000}{0.0072*110.8}} = 150 \ \Gamma_{II};$$

 $I_{\rm YO} = 84~{\rm д}$ Б ($L_{\rm nW} = 77~{\rm д}$ Б) для плиты с поверхностной плотностью 300 кг/м².


ВЫВОД: таким образом, состав междуэтажного перекрытия, где в качестве звукоизоляционного слоя заложен вспененный полиэтилен ПЕНОТЕРМ толщиной 8 мм, соответствует требованиям СНиП II-12-77 «Защита от шума».

Б Расчет звукоизоляции монолитного перекрытия между помещениями квартир

В соответствии с требованиями СНиП II-12-77 «Защита от шума», нормативный индекс изоляции воздушного шума I_B (R_W), в дБ и приведенного уровня ударного шума под перекрытием I_Y (L_{nW} 60) в дБ следует принимать по табл. 7 СНиП или по табл. 6 МГСН 2.04-97

.

$$I_B - 50 \; (R_W = 52 \;), \; дБ \; ; \qquad \qquad I_Y - 67 \; (L_n_W = 60), \; дБ.$$
 Состав перекрытия:

1. Расчет изоляции воздушного шума монолитным перекрытием

Индекс изоляции воздушного шума I_B в дБ перекрытием определяется по табл. 10 СНиП в зависимости от величины индекса изоляции воздушного шума плитой перекрытия I_{BO} , определенного в соответствии с п.п. 6.8 и 6.9 и частоты резонанса $f_{P\Pi}$ в Γ ц, определяется по формуле:

$$f_{\rm P\Pi} = 0.5* \sqrt{\frac{E\partial * (m1+m2)}{h3*m1*m2}}$$
, где

 $E_{\rm d} = 6.6*10^4$, кгс/м² (динамический модуль упругости звукоизоляционного слоя);

 $m_1 = 450 \text{ кг/м}^2$ (поверхностная плотность сплошной ж.б. плиты);

 $m_2 = 110,8 \ {\rm kr/m^2}$ (поверхностная плотность выше звукоизоляционного слоя);

 $h_3 = h_0*(1-\mathbf{E}_{\mathbf{\Pi}})$, где h_0 — толщина звукоизоляционного слоя в не обжатом состоянии —

0,008м; ξ_{Π} – относительное сжатие материала под нагрузкой – 0,1

$$h_3 = 0.008*(1-0.1)=0.0072.$$

$$f_{P\Pi} = 0.5* \sqrt{\frac{6.6*10000*(450+110,4)}{0.0072*450*110,8}} \, = 160.5 \, \Gamma_{II},$$

 $I_{BO} = 23*lg m_{\Theta} - 10 Дб$ (СНиП стр.13, при m > 200 кг/м²);

 $m_{\text{Э}} = \kappa^* m_1 = 1*450 = 450 \text{ кг/м}^2$ (для сплошной плиты $\kappa = 1$);

$$I_{BO} = 23*lg (450) - 10 = 23*2,65 - 10 = 51$$
 дБ

По табл. 10 в зависимости от $f_{P\Pi}$ и I_{BO}

определяем $I_B=53$ ($R_W=55$), дБ , что больше 50 дБ нормативного значения индекса изоляции воздушного шума (по СНиП) и $R_W=52$, дБ (по МГСН).

2. Расчет изоляции ударного шума монолитным перекрытием

Индекс приведенного уровня ударного шума Іу перекрытием с полом на звукоизоляционном слое определяется по табл.12 СНи Π в зависимости от величины индекса приведенного уровня ударного шума перекрытия I_{VO} , определяемого по табл.13 и частоты f_O колебания пола, лежащего на звукоизоляционном слое. Рассчитаем f_O по формуле

$$f_0 = \sqrt{\frac{E\partial}{h3*m2}}$$
, где

 $E_{\rm A} = 6.6*10^4 \, {\rm krc/m^2};$

 $h_3 = 0.0072;$

 $m_2 = 110.8 \text{ kg/m}^2$.

$$f_0 = 0.5* \sqrt{\frac{6.6*10000}{0.0072*110.8}} = 150 \Gamma_{\text{U}};$$

 $I_{\rm YO} = 80~{\rm д}$ Б для сплошной плиты с поверхностной плотностью 450 кг/м².

По табл.12 $I_{\rm Y}=60$ дБ, что меньше нормативного значения индекса изоляции ударного шума перекрытием (67 дБ по СНиП). В таблице 3.1 настоящих рекомендаций указаны более высокие значения индексов несущей плиты перекрытия, а именно $L_{\rm nW}=76$ дБ вместо ожидаемых 73 дБ. Это произошло из-за того, что СНиП II-12-77 «Защита от шума» был подготовлен к печати в 1977 году, когда плиты перекрытия толщиной 180 мм применялись весьма редко в практике строительства. По мере накопления экспериментальных данных появилась необходимость внести корректирующие поправки в ряд приведенных в СНиП таблиц. Одна из них коснулась и значений индексов монолитных плит перекрытий.

Поэтому значения L_{nW} = 76 дБ оказалось несколько выше приведенных в СНиП. Для расчета ожидаемого индекса приведенного уровня ударного шума плиты перекрытия с указанным выше полом воспользуемся данными таблицы 3.10 МГСН. При индексе плиты перекрытия L_{nW} = 76 дБ и частоте резонанса плавающего пола в 150 Гц индекс изоляции ударного шума перекрытием с полом, уложенным по слою ПЕНОТЕРМА, равен L_{nW} = 56 дБ. Полученное значение индекса также отвечает требования МГСН.

ВЫВОД: таким образом, состав междуэтажного перекрытия, где в качестве звукоизоляционного слоя заложен слой пенополипропилена ПЕНОТЕРМ толщиной 8 мм, соответствует требованиям СНиП II-12-77 «Защита от шума» по звукоизоляции воздушного и ударного шума, предъявляемым к перекрытиям жилых квартир и требованиям МГСН 2.04-97, предъявляемым к перекрытиям между помещениями квартир в домах категории Б и В.